
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 11 – Functions (cont)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Functions

–Why they’re useful

–When you should use them

• Defining functions

• Calling functions

• Variable scope

• Passing arguments

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To introduce value-returning functions

– Common problems

– Solutions to common problems

• To better grasp how values in the scope of a
function actually work

• To practice function calls

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Review: Parts of a Function

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Function Vocabulary

6

def myFunc(year, name):

lines of code

more lines of code

def main():

myFunc(2015, "Xavier")

main()

_______ ____
_____ _________

_______ ___

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Function Vocabulary

7

def myFunc(year, name):

lines of code

more lines of code

def main():

myFunc(2015, "Xavier")

main()

function n___
f____ p________

function
d______

function c__

function
b___

a________

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Function Vocabulary

8

def myFunc(year, name):

lines of code

more lines of code

def main():

myFunc(2015, "Xavier")

main()

function n___
f____ p________

function
d______

function c__

function
b___

a________

function name
formal parameters

arguments

function
body

function call

function
definition

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted9

File Layout and Constants

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Layout of a Python File

10

File: gradeGetter.py

Author: Dr. Gibson

MIN_GRADE = 0

MAX_GRADE = 100

getInput() gets a value between...

Input: minn; an integer...

def getInput(minn, maxx):

msg = "Please enter..."

more code here

return val

def main():

grade = getInput(MIN_GRADE, MAX_GRADE)

print("You got a", grade)

main()

header comment

constants

definitions and
function headers for
all functions other

than main()

main() definition

call to main()

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Global Constants

• Globals are variables declared outside
of any function (including main())

• Accessible globally in your program

– To all functions and code

• Your programs may not have global variables

• Your programs may use global constants

– In fact, constants should be global

11

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted12

Return Statements

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Giving Information to a Function

• Passing parameters provides a mechanism for
initializing the variables in a function

• Parameters act as inputs to a function

• We can call a function many times and get
different results by changing its parameters

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Getting Information from a Function

• We’ve already seen numerous examples of
functions that return values

int() , str(), input(), etc.

• For example, int()

– Takes in any string as its parameter

– Processes the digits in the string

– And returns an integer value

14

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Functions that Return Values

• To have a function return a value after it is
called, we need to use the return keyword

def square(num):

ans = num * num

return the square

return ans

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Handling Return Values

• When Python encounters return, it

– Exits the function (immediately!)

• Even if it’s not the end of the function

–Returns control back to where
the function was called from

• The expression in the return statement is sent
back to the caller as a return value

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

17

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Let’s follow the flow of the code

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

18

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Let’s follow the flow of the code

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

19

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Let’s follow the flow of the code

x: 5

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

20

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Let’s follow the flow of the code

x: 5

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

21

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Let’s follow the flow of the code

x: 5

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

22

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5

Let’s follow the flow of the code

num: 5

x: 5

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

23

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5
Step 7: Calculate ans = num * num

Let’s follow the flow of the code

num: 5

x: 5

ans: 25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

24

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5
Step 7: Calculate ans = num * num

Step 8: Return the value 25 to main() and set y = the returned value

Let’s follow the flow of the code

num: 5

y: 25

x: 5

ans: 25

return value:

25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Code Trace: Return from square()

25

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5
Step 7: Calculate ans = num * num

Step 8: Return the value 25 to main() and set y = the returned value
Step 9: Print value of y

Let’s follow the flow of the code

x: 5

y: 25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted26

Island Example

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted27 www.umbc.edu

5

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted28

1. Function square() is called

a. Make copy of x’s value

5

5

www.umbc.edu

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted29

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

5

5

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted30

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

55

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted31

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

55

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted32

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

5255

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted33

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

525255

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted34

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

525255

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted35

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

525

www.umbc.edu

5

25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted36

1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

e. Assign returned value to y

255

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted37

None and Common Problems

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Every Function Returns Something

• All Python functions return a value

– Even if they don’t have a return statement

• Functions without an explicit return
pass back a special object, called None

– None is the absence of a value

38

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to include the return statement
>>> def multiply(num1, num2):

... print("doing", num1, "*", num2)

... answer = num1 * num2

>>> product = multiply(3, 5)

doing 3 * 5

>>> print(product)

None

39

Variable assigned to
the return value will

be None

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to assign that value to anything
>>> product = 0

>>> def multiply(num1, num2):

... print("doing", num1, "*", num2)

... return num1 * num2

>>> multiply(7, 8)

doing 7 * 8

>>> print(product)

0
40

The variable product was not
updated; the code should have read
product = multiply(7, 8)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Common Errors and Problems

• If your value-returning functions produce
strange messages, check to make sure you
used the return correctly!

TypeError: unsupported operand type(s)

for *: 'NoneType' and 'int'

TypeError: 'NoneType' object is not

iterable

41

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted42

“Modifying” Parameters

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Bank Interest Example

• Suppose you are writing a program that
manages bank accounts

• One function we would need to create is one
to accumulate interest on the account

43

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Bank Interest Example

• We want to set the balance of the account to
a new value that includes the interest amount

44

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main() Is this what
we expected?

1000

What is the output
of this code?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

What’s Going On?

• It was intended that the 5% would be
added to the amount, returning $1050

• Was $1000 the expected output?

• No – so what went wrong?

• This is a very common mistake to make!

– Let’s trace through the code and figure it out

45

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Tracing the Bank Interest Code

• First, we create two variables that are local to
main()

46

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

local variables
of main()

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Tracing the Bank Interest Code

• Second, we call addInterest() and
pass the values of the local variables of
main() as arguments

47

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Call to
addInterest()

Passing the values
stored in amount

and rate, which are
local variables

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Tracing the Bank Interest Code

• Third, when control is passed to addInterest(),
the formal parameters (balance and rate) are set to
the value of the arguments (amount and rate)

48

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Control passes to
addInterest()

balance = amount = 1000

rate = rate = 0.05

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Tracing the Bank Interest Code

• Even though the parameter rate appears in both
main() and addInterest(), they are two
separate variables because of scope

49

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Even though rate
exists in both
main() and

addInterest(),

they are in two
separate scopes

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Scope

• In other words, the formal parameters
of a function only receive the values of
the arguments

• The function does not have access
to the original variable in main()

50

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

New Bank Interest Code

51

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

main()

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

New Bank Interest Code

52

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

main()

These are the only
parts we changed

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• M + %

– (Meta + Shift + 5)

– Search and replace

• Keeps correct case! (cat -> dog, Cat -> Dog, CAT -> DOG)

• First, type the thing to search for; hit Enter

• Second, type the thing replace it with; Enter

– Hit “y” or “n” for each highlighted instance to
indicate if you want to replace that one

53

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• HW 5 is out on Blackboard now

– Due by Friday (Oct 13th) at 8:59:59 PM

• Midterm is in class, October 18th and 19th

– Survey #1 will be released that week as well

– Review packet out on the website now

– You MUST use a pencil on the exam!

• Exams taken in pen will not be graded

54

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Cardboard box:

– https://pixabay.com/p-220256/

• Wooden ship (adapted from):
– https://pixabay.com/p-307603/

• Coconut island (adapted from):
– https://pixabay.com/p-1892861/

• Dollar sign:
– https://pixabay.com/p-634901/

55

