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CMSC201
Computer Science I for Majors

Lecture 11 – Functions (cont)
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Last Class We Covered

• Functions

–Why they’re useful

–When you should use them

• Defining functions

• Calling functions

• Variable scope

• Passing arguments
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Any Questions from Last Time?



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To introduce value-returning functions

– Common problems

– Solutions to common problems

• To better grasp how values in the scope of a 
function actually work

• To practice function calls

4
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Review: Parts of a Function
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Function Vocabulary

6

def myFunc(year, name):

# lines of code

# more lines of code

def main():

myFunc(2015, "Xavier")

main()

_______ ____
_____ _________

_______ 
_______

_______ ___

______ 
____

_________
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Function Vocabulary

7

def myFunc(year, name):

# lines of code

# more lines of code

def main():

myFunc(2015, "Xavier")

main()

function n___
f____ p________

function 
d______

function c__

function 
b___

a________
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Function Vocabulary

8

def myFunc(year, name):

# lines of code

# more lines of code

def main():

myFunc(2015, "Xavier")

main()

function n___
f____ p________

function 
d______

function c__

function 
b___

a________

function name
formal parameters

arguments

function 
body

function call

function 
definition
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File Layout and Constants
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Layout of a Python File

10

# File:    gradeGetter.py

# Author:  Dr. Gibson

MIN_GRADE = 0

MAX_GRADE = 100

# getInput() gets a value between...

# Input:     minn; an integer...

def getInput(minn, maxx):

msg = "Please enter..."

# more code here

return val

def main():

grade = getInput(MIN_GRADE, MAX_GRADE)

print("You got a", grade)

main()

header comment

constants

definitions and 
function headers for 
all functions other 

than main()

main() definition

call to main()
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Global Constants

• Globals are variables declared outside 
of any function (including main() )

• Accessible globally in your program

– To all functions and code

• Your programs may not have global variables

• Your programs may use global constants

– In fact, constants should be global

11
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Return Statements
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Giving Information to a Function

• Passing parameters provides a mechanism for 
initializing the variables in a function

• Parameters act as inputs to a function

• We can call a function many times and get 
different results by changing its parameters

13
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Getting Information from a Function

• We’ve already seen numerous examples of 
functions that return values

int() , str(), input(), etc.

• For example, int()

– Takes in any string as its parameter

– Processes the digits in the string

– And returns an integer value

14
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Functions that Return Values

• To have a function return a value after it is 
called, we need to use the return keyword

def square(num):

ans = num * num

# return the square

return ans

15
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Handling Return Values

• When Python encounters return, it

– Exits the function (immediately!)

• Even if it’s not the end of the function

–Returns control back to where 
the function was called from

• The expression in the return statement is sent 
back to the caller as a return value

16
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Code Trace: Return from square()

17

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Let’s follow the flow of the code
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Code Trace: Return from square()

18

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Let’s follow the flow of the code
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Code Trace: Return from square()

19

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Let’s follow the flow of the code

x:  5
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Code Trace: Return from square()

20

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Let’s follow the flow of the code

x:  5
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Code Trace: Return from square()

21

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Let’s follow the flow of the code

x:  5
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Code Trace: Return from square()

22

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5

Let’s follow the flow of the code

num:  5

x:  5
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Code Trace: Return from square()

23

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5
Step 7: Calculate ans = num * num

Let’s follow the flow of the code

num:  5

x:  5

ans:  25
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Code Trace: Return from square()

24

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5
Step 7: Calculate ans = num * num

Step 8: Return the value 25 to main() and set y = the returned value

Let’s follow the flow of the code

num:  5

y: 25

x:  5

ans:  25

return value: 

25
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Code Trace: Return from square()

25

def main():

x = 5

y = square(x)

print(y)

main()

def square(num):

ans = num * num

return ans

Step 1: Call main()

Step 2: Pass control to def main()

Step 3: Set x = 5

Step 4: See the function call to square()

Step 5: Pass control from main() to square(), sending the argument 5

Step 6: Set the value of the formal parameter num in square() to 5
Step 7: Calculate ans = num * num

Step 8: Return the value 25 to main() and set y = the returned value
Step 9: Print value of y

Let’s follow the flow of the code

x:  5

y: 25
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Island Example



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted27 www.umbc.edu

5



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted28

1. Function square() is called

a. Make copy of x’s value

5

5

www.umbc.edu
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

5

5
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

55
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

55
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

5255
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

525255
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

525255
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

525

www.umbc.edu

5

25
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1. Function square() is called

a. Make copy of x’s value

b. Pass copy of 5 to square()

c. Execute num * num

a. Save in variable ans

d. Return calculated value

e. Assign returned value to y

255
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None and Common Problems
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Every Function Returns Something

• All Python functions return a value

– Even if they don’t have a return statement 

• Functions without an explicit return
pass back a special object, called None

– None is the absence of a value

38
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Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to include the return statement
>>> def multiply(num1, num2):

...     print("doing", num1, "*", num2)

...     answer = num1 * num2

>>> product = multiply(3, 5)

doing 3 * 5

>>> print(product)

None

39

Variable assigned to 
the return value will 

be None
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Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to assign that value to anything
>>> product = 0

>>> def multiply(num1, num2):

...     print("doing", num1, "*", num2)

...     return num1 * num2

>>> multiply(7, 8)

doing 7 * 8

>>> print(product)

0
40

The variable product was not 
updated; the code should have read
product = multiply(7, 8)
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Common Errors and Problems

• If your value-returning functions produce 
strange messages, check to make sure you 
used the return correctly!

TypeError: unsupported operand type(s) 

for *: 'NoneType' and 'int'

TypeError: 'NoneType' object is not 

iterable

41
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“Modifying” Parameters
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Bank Interest Example

• Suppose you are writing a program that 
manages bank accounts

• One function we would need to create is one 
to accumulate interest on the account

43

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance
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Bank Interest Example

• We want to set the balance of the account to 
a new value that includes the interest amount

44

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main() Is this what 
we expected?

1000

What is the output 
of this code?
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What’s Going On?

• It was intended that the 5% would be 
added to the amount, returning $1050

• Was $1000 the expected output?

• No – so what went wrong?

• This is a very common mistake to make!

– Let’s trace through the code and figure it out

45



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Tracing the Bank Interest Code

• First, we create two variables that are local to 
main()

46

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

local variables 
of main()
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Tracing the Bank Interest Code

• Second, we call addInterest() and 
pass the values of the local variables of 
main() as arguments

47

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Call to 
addInterest()

Passing the values 
stored in amount 

and rate, which are 
local variables
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Tracing the Bank Interest Code

• Third, when control is passed to addInterest(), 
the formal parameters (balance and rate) are set to 
the value of the arguments (amount and rate)

48

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Control passes to 
addInterest()

balance = amount = 1000

rate = rate = 0.05
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Tracing the Bank Interest Code

• Even though the parameter rate appears in both 
main() and addInterest(), they are two 
separate variables because of scope

49

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Even though rate 
exists in both 
main() and 

addInterest(), 

they are in two 
separate scopes
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Scope

• In other words, the formal parameters 
of a function only receive the values of 
the arguments

• The function does not have access 
to the original variable in main()

50
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New Bank Interest Code

51

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

main()
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New Bank Interest Code

52

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

main()

These are the only 
parts we changed
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• M + %

– (Meta + Shift + 5)

– Search and replace

• Keeps correct case!  (cat -> dog, Cat -> Dog, CAT -> DOG)

• First, type the thing to search for; hit Enter

• Second, type the thing replace it with; Enter

– Hit “y” or “n” for each highlighted instance to 
indicate if you want to replace that one

53
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Announcements

• HW 5 is out on Blackboard now

– Due by Friday (Oct 13th) at 8:59:59 PM

• Midterm is in class, October 18th and 19th

– Survey #1 will be released that week as well

– Review packet out on the website now

– You MUST use a pencil on the exam!

• Exams taken in pen will not be graded

54
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Image Sources
• Cardboard box:

– https://pixabay.com/p-220256/

• Wooden ship (adapted from):
– https://pixabay.com/p-307603/

• Coconut island (adapted from):
– https://pixabay.com/p-1892861/

• Dollar sign:
– https://pixabay.com/p-634901/
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